Simulated microgravity enhances vasoconstrictor responsiveness of rat basilar artery.
نویسندگان
چکیده
Recently, hypertrophy and increased myogenic tone of brain vessels have been observed in rats after simulated microgravity. It is expected that simulated microgravity may also induce hyperreactivity of brain vessels. To test this hypothesis, Sprague-Dawley rats were subjected to a 4-wk tail-suspended hindlimb unloading (TS) to simulate the cardiovascular deconditioning effect of microgravity. After 4 wk, the vasoreactivity of isolated basilar arterial rings from TS rats to both receptor- and non-receptor-mediated vasoconstrictors, such as KCl, arginine vasopressin, or 5-hydroxytryptamine (5-HT), and vasodilators such as ACh, thrombin, adenosine, or sodium nitroprusside were examined and compared with those from simultaneous control (Cn) rats. In the first part of this study, it was found that the maximal isometric contractile responsiveness evoked by vasoconstrictors such as KCl, arginine vasopressin, or 5-HT was enhanced in basilar arterial rings from TS rats, whereas vasodilatory responsiveness to vasodilators showed no significant difference between TS and Cn rats. In the second part of this study, it was found that removal of the endothelium had no effects on the contractile responsiveness to 5-HT in basilar arterial rings from TS rats but enhanced markedly the responsiveness in basilar arterial rings from Cn rats to an extent comparable with that of TS rats. Application of tetraethylammonium also had no effects on the contractile response to 5-HT in basilar arterial rings from TS but significantly increased the responsiveness of basilar arterial rings from Cn rats with endothelium intact. These results showed that 4-wk simulated microgravity enhanced the vascular contractile responsiveness of basilar arterial rings to both receptor- and non-receptor-mediated vasoconstrictors, and the enhancement of 5-HT-induced contraction in TS rat basilar arteries was due to an impairment of endothelium-dependent mechanism. These results suggest that endothelium-derived hyperpolarizing factors are responsible for this endothelium-dependent attenuating modulatory mechanism in contractile responsiveness of rat basilar arteries to 5-HT.
منابع مشابه
Difference in blood volume distribution between upright humans and standing quadrupeds.
TO THE EDITOR: After two decades of animal studies on vascular adaptation to microgravity using the rat analog (for review, see Ref. 3), it is gratifying to note the recently published findings on space-flown mice by Sofronova and coworkers (1). They demonstrate that both vasoconstrictor and vasodilator properties are attenuated in basilar arteries (BA) isolated from the mice flown 30 days on a...
متن کاملReply to Zhang.
TO THE EDITOR: We appreciate the opportunity to further discuss the effects of spaceflight on the cerebral circulation. Dr. Zhang’s letter (6) emanates from the multiple observations that in head-down hindlimb-unloaded (HU) rats, an animal model used to simulate microgravity exposure, the cerebral arteries demonstrate greater vasoconstrictor responsiveness and hypertrophic remodeling (e.g., 5) ...
متن کاملDaily short-period gravitation can prevent functional and structural changes in arteries of simulated microgravity rats.
This study was designed to clarify whether simulated microgravity-induced differential adaptational changes in cerebral and hindlimb arteries could be prevented by daily short-period restoration of the normal distribution of transmural pressure across arterial vasculature by either dorsoventral or footward gravitational loading. Tail suspension (Sus) for 28 days was used to simulate cardiovascu...
متن کاملSimulated microgravity alters rat mesenteric artery vasoconstrictor dynamics through an intracellular Ca release mechanism
Patrick N. Colleran, Bradley J. Behnke, M. Keith Wilkerson, Anthony J. Donato, and Michael D. Delp Department of Health and Kinesiology, Texas A&M University, College Station, Texas; Division of Exercise Physiology and the Center for Interdisciplinary Research in Cardiovascular Sciences, West Virginia University School of Medicine, Morgantown, West Virginia; and Department of Applied Physiology...
متن کاملSimulated microgravity alters rat mesenteric artery vasoconstrictor dynamics through an intracellular Ca(2+) release mechanism.
Previous work has shown that orthostatic hypotension associated with cardiovascular deconditioning results from inadequate peripheral vasoconstriction. We used the hindlimb-unloaded (HU) rat in this study as a model to induce cardiovascular deconditioning. The purpose of this study was to test the hypothesis that 14 days of HU diminishes vasoconstrictor responsiveness of mesenteric resistance a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 90 6 شماره
صفحات -
تاریخ انتشار 2001